

types of stents closed cell vs. open cell, tapered vs. non tapered, mesh stents

Johann Kulikovski, Department of Neuroradiology. Saarland University Medical Center

Disclosure

• I have no actual or potential conflict of interest in relation to this presentation.

Stent selection

material, construction and design

- radial force/recoil
- scaffolding
- lesion coverage
- flexibility
- conformability/bending stiffness
- side-branch preservation
- foreshortening
- radiopacity
- biocompatibility

Copyright by National Heart Lung and Blood Insitute (NIH)

Department of Neuroradiology. Saarland University Medical Center

Stent geometry

closed-cell

small surface area

- lower flexibility
- better scaffolding
- better lesion coverage

open-cell

less junction points

- higher flexibility
- increased conformability
- lower longitudinal strength

Examples of Stents

Long-term Results of Tapered Stents in Endovascular Treatment of Carotid Stenosis

Protégé

- 1,368 procedures 2005 2012
- primary end points: 30-day mortality and any ipsilateral neurological event
- secondary endpoints: any late neurological event and restenosis >50%.
- cylindrical stent: 883 patients; tapered stent: 485 patients
- no significant difference in peri-procedural stroke (1.2% vs. 1.6%)
- lower risk of restenosis and neurological events for tapered stents at late outcomes

Impact of different stent types on outcome event rate (secondary analysis of SPACE Trial)

lancan at a	Ctroles	2000
Jansen et a	ı. Sıroke.	2009.

Stent	Wallstent	Acculink	Precise
No. of patients	436	92	35
Pat. with 0E(Outcom	ne Events)	9	5
OE rate (95% CI)	5.5% (3.6–8.1%)	9.8% (4.6–17.8%)	14.3% (4.8–30.3%)
Fig. 6		Combined OE rate:	11.0% (6.2–17.8%)

Wallstent Acculink

Precise

Dual-layer Stents

Dual-layer Stents

CGuard Roadsaver

Trials with symptomatic and asymtomatic patients

TRIAL	n	technical success	peri-procedural events	MACE 30 days
PARADIGM	101	100%	0,9% minor stroke	0%
IRON-GUARD	200	100%	2,5% minor stroke, 1% TIA	0%
CASANA	82	98,5- 100%	24% DWI lesions	0%
WISSGOTT	30	100	0%	0%
CARENET	30	100	37% DWI lesions 0%	
CLEAR-ROAD	100	100%	no data 2,1%	
CONFIDENCE	295	-		<u>-</u>

Acute Occlusions of Dual-Layer Carotid Stents After Endovascular Emergency Treatment of Tandem Lesions

- retrospective analysis 2011-2017
- 47 patients with occlusions of the MCA or intracranial ICA:
 - 20 patients: dual-layer Casper-RX
 - 27 patients: single-layer Wallstent (closed cell, n=25) and Vivexx (open cell, n=2)
- significantly higher rate of acute stent occlusion in dual layer stent (45% versus 3.7%)
- we recommend using single-layer stents in the emergency setting

Optical Coherence Tomography after Carotid Stenting

Fig 15. Stent apposition to the arterial wall on a stent strut-based analysis (n = 20412)

	Closed cell (n=8655)	Open cell (n=6654)	Hybrid cell (n=5103)	p-value
malapposed struts	(34,5%)(2982)	15% (998)	16,3% (833)	CC vs OC p < 0.01 CC vs Hyb p < 0.01 OC vs Hyb p = 0.06
embedded struts	9% (783)	27% (1797)	25,6% (1310)	CC vs OC p < 0.01 CC vs Hyb p < 0.01 OC vs Hyb p = 1
well apposed struts	56,5% (4890)	58% (3859)	58,1% (2960)	CC vs OC p = 0.06 CC vs Hyb p < 0.08 OC vs Hyb p = 1

Department of Neuroradiology. Saarland University Medical Center

80% ICA Stenosis: ViVEXX Stent (open-cell) implantation after failed implantation of Wallstent

Department of Neuroradiology. Saarland University Medical Center

50% symptomatic ICA Stenosis: ViVEXX Stent (open-cell) implantation after failed implantation of Wallstent

key learning points

- Open-cell Stents have higher flexibility and increased anatomy adaptability at the expense of worse lesion coverage
- There is no significant difference in perioperative stroke but a lower risk of restenosis and neurological events for tapered stents at late outcomes.
- Dual-layer mesh stents can be safely used for treatment ICA stenosis but they have a higher risk of acute occlusion in emergency stenting.